The values supplied in the function call replace the defaults and a list with all possible arguments is returned. The returned list is used as the ‘control’ argument to the ‘nlme’ function.
Usage
nlmeControl(
maxIter = 100,
pnlsMaxIter = 100,
msMaxIter = 100,
minScale = 0.001,
tolerance = 1e-05,
niterEM = 25,
pnlsTol = 0.001,
msTol = 1e-06,
returnObject = FALSE,
msVerbose = FALSE,
msWarnNoConv = TRUE,
gradHess = TRUE,
apVar = TRUE,
.relStep = .Machine$double.eps^(1/3),
minAbsParApVar = 0.05,
opt = c("nlminb", "nlm"),
natural = TRUE,
sigma = NULL,
optExpression = TRUE,
literalFix = TRUE,
sumProd = FALSE,
rxControl = NULL,
method = c("ML", "REML"),
random = NULL,
fixed = NULL,
weights = NULL,
verbose = TRUE,
returnNlme = FALSE,
addProp = c("combined2", "combined1"),
calcTables = TRUE,
compress = TRUE,
adjObf = TRUE,
ci = 0.95,
sigdig = 4,
sigdigTable = NULL,
muRefCovAlg = TRUE,
...
)
Arguments
- maxIter
maximum number of iterations for the
nlme
optimization algorithm. Default is 50.- pnlsMaxIter
maximum number of iterations for the
PNLS
optimization step inside thenlme
optimization. Default is 7.- msMaxIter
maximum number of iterations for
nlminb
(iter.max
) or thenlm
(iterlim
, from the 10-th step) optimization step inside thenlme
optimization. Default is 50 (which may be too small for e.g. for overparametrized cases).- minScale
minimum factor by which to shrink the default step size in an attempt to decrease the sum of squares in the
PNLS
step. Default0.001
.- tolerance
tolerance for the convergence criterion in the
nlme
algorithm. Default is1e-6
.- niterEM
number of iterations for the EM algorithm used to refine the initial estimates of the random effects variance-covariance coefficients. Default is 25.
- pnlsTol
tolerance for the convergence criterion in
PNLS
step. Default is1e-3
.- msTol
tolerance for the convergence criterion in
nlm
, passed as thegradtol
argument to the function (see documentation onnlm
). Default is1e-7
.- returnObject
a logical value indicating whether the fitted object should be returned when the maximum number of iterations is reached without convergence of the algorithm. Default is
FALSE
.- msVerbose
a logical value passed as the
trace
tonlminb(.., control= list(trace = *, ..))
or as argumentprint.level
tonlm()
. Default isFALSE
.- msWarnNoConv
logical indicating if a
warning
should be signalled whenever the minimization (byopt
) in the LME step does not converge; defaults toTRUE
.- gradHess
a logical value indicating whether numerical gradient vectors and Hessian matrices of the log-likelihood function should be used in the
nlm
optimization. This option is only available when the correlation structure (corStruct
) and the variance function structure (varFunc
) have no "varying" parameters and thepdMat
classes used in the random effects structure arepdSymm
(general positive-definite),pdDiag
(diagonal),pdIdent
(multiple of the identity), orpdCompSymm
(compound symmetry). Default isTRUE
.- apVar
a logical value indicating whether the approximate covariance matrix of the variance-covariance parameters should be calculated. Default is
TRUE
.- .relStep
relative step for numerical derivatives calculations. Default is
.Machine$double.eps^(1/3)
.- minAbsParApVar
numeric value - minimum absolute parameter value in the approximate variance calculation. The default is
0.05
.- opt
the optimizer to be used, either
"nlminb"
(the default) or"nlm"
.- natural
a logical value indicating whether the
pdNatural
parametrization should be used for general positive-definite matrices (pdSymm
) inreStruct
, when the approximate covariance matrix of the estimators is calculated. Default isTRUE
.- sigma
optionally a positive number to fix the residual error at. If
NULL
, as by default, or0
, sigma is estimated.- optExpression
Optimize the rxode2 expression to speed up calculation. By default this is turned on.
- literalFix
boolean, substitute fixed population values as literals and re-adjust ui and parameter estimates after optimization; Default is `TRUE`.
- sumProd
Is a boolean indicating if the model should change multiplication to high precision multiplication and sums to high precision sums using the PreciseSums package. By default this is
FALSE
.- rxControl
`rxode2` ODE solving options during fitting, created with `rxControl()`
- method
a character string. If
"REML"
the model is fit by maximizing the restricted log-likelihood. If"ML"
the log-likelihood is maximized. Defaults to"ML"
.- random
optionally, any of the following: (i) a two-sided formula of the form
r1+...+rn~x1+...+xm | g1/.../gQ
, withr1,...,rn
naming parameters included on the right hand side ofmodel
,x1+...+xm
specifying the random-effects model for these parameters andg1/.../gQ
the grouping structure (Q
may be equal to 1, in which case no/
is required). The random effects formula will be repeated for all levels of grouping, in the case of multiple levels of grouping; (ii) a two-sided formula of the formr1+...+rn~x1+..+xm
, a list of two-sided formulas of the formr1~x1+...+xm
, with possibly different random-effects models for different parameters, apdMat
object with a two-sided formula, or list of two-sided formulas (i.e. a non-NULL
value forformula(random)
), or a list of pdMat objects with two-sided formulas, or lists of two-sided formulas. In this case, the grouping structure formula will be given ingroups
, or derived from the data used to fit the nonlinear mixed-effects model, which should inherit from classgroupedData
,; (iii) a named list of formulas, lists of formulas, orpdMat
objects as in (ii), with the grouping factors as names. The order of nesting will be assumed the same as the order of the order of the elements in the list; (iv) anreStruct
object. See the documentation onpdClasses
for a description of the availablepdMat
classes. Defaults tofixed
, resulting in all fixed effects having also random effects.- fixed
a two-sided linear formula of the form
f1+...+fn~x1+...+xm
, or a list of two-sided formulas of the formf1~x1+...+xm
, with possibly different models for different parameters. Thef1,...,fn
are the names of parameters included on the right hand side ofmodel
and thex1+...+xm
expressions define linear models for these parameters (when the left hand side of the formula contains several parameters, they all are assumed to follow the same linear model, described by the right hand side expression). A1
on the right hand side of the formula(s) indicates a single fixed effects for the corresponding parameter(s).- weights
an optional
varFunc
object or one-sided formula describing the within-group heteroscedasticity structure. If given as a formula, it is used as the argument tovarFixed
, corresponding to fixed variance weights. See the documentation onvarClasses
for a description of the availablevarFunc
classes. Defaults toNULL
, corresponding to homoscedastic within-group errors.- verbose
an optional logical value. If
TRUE
information on the evolution of the iterative algorithm is printed. Default isFALSE
.- returnNlme
Returns the nlme object instead of the nlmixr object (by default FALSE). If any of the nlme specific options of `random`, `fixed`, `sens`, the nlme object is returned
- addProp
specifies the type of additive plus proportional errors, the one where standard deviations add (combined1) or the type where the variances add (combined2).
The combined1 error type can be described by the following equation:
$$y = f + (a + b\times f^c) \times \varepsilon$$
The combined2 error model can be described by the following equation:
$$y = f + \sqrt{a^2 + b^2\times f^{2\times c}} \times \varepsilon$$
Where:
- y represents the observed value
- f represents the predicted value
- a is the additive standard deviation
- b is the proportional/power standard deviation
- c is the power exponent (in the proportional case c=1)
- calcTables
This boolean is to determine if the foceiFit will calculate tables. By default this is
TRUE
- compress
Should the object have compressed items
- adjObf
is a boolean to indicate if the objective function should be adjusted to be closer to NONMEM's default objective function. By default this is
TRUE
- ci
Confidence level for some tables. By default this is 0.95 or 95% confidence.
- sigdig
Optimization significant digits. This controls:
The tolerance of the inner and outer optimization is
10^-sigdig
The tolerance of the ODE solvers is
0.5*10^(-sigdig-2)
; For the sensitivity equations and steady-state solutions the default is0.5*10^(-sigdig-1.5)
(sensitivity changes only applicable for liblsoda)The tolerance of the boundary check is
5 * 10 ^ (-sigdig + 1)
- sigdigTable
Significant digits in the final output table. If not specified, then it matches the significant digits in the `sigdig` optimization algorithm. If `sigdig` is NULL, use 3.
- muRefCovAlg
This controls if algebraic expressions that can be mu-referenced are treated as mu-referenced covariates by:
1. Creating a internal data-variable `nlmixrMuDerCov#` for each algebraic mu-referenced expression
2. Change the algebraic expression to `nlmixrMuDerCov# * mu_cov_theta`
3. Use the internal mu-referenced covariate for saem
4. After optimization is completed, replace `model()` with old `model()` expression
5. Remove `nlmixrMuDerCov#` from nlmix2 output
In general, these covariates should be more accurate since it changes the system to a linear compartment model. Therefore, by default this is `TRUE`.
- ...
Additional arguments passed to
nlmixr2est::nlmeControl()
.
See also
Other Estimation control:
foceiControl()
,
saemControl()
Examples
nlmeControl()
#> $maxIter
#> [1] 100
#>
#> $pnlsMaxIter
#> [1] 100
#>
#> $msMaxIter
#> [1] 100
#>
#> $minScale
#> [1] 0.001
#>
#> $tolerance
#> [1] 1e-05
#>
#> $niterEM
#> [1] 25
#>
#> $pnlsTol
#> [1] 0.001
#>
#> $msTol
#> [1] 1e-06
#>
#> $returnObject
#> [1] FALSE
#>
#> $msVerbose
#> [1] FALSE
#>
#> $msWarnNoConv
#> [1] TRUE
#>
#> $gradHess
#> [1] TRUE
#>
#> $apVar
#> [1] TRUE
#>
#> $.relStep
#> [1] 6.055454e-06
#>
#> $minAbsParApVar
#> [1] 0.05
#>
#> $opt
#> [1] "nlminb"
#>
#> $natural
#> [1] TRUE
#>
#> $sigma
#> [1] 0
#>
#> $optExpression
#> [1] TRUE
#>
#> $literalFix
#> [1] TRUE
#>
#> $sumProd
#> [1] FALSE
#>
#> $rxControl
#> $scale
#> NULL
#>
#> $method
#> liblsoda
#> 2
#>
#> $atol
#> [1] 1e-04
#>
#> $rtol
#> [1] 1e-04
#>
#> $maxsteps
#> [1] 70000
#>
#> $hmin
#> [1] 0
#>
#> $hmax
#> [1] NA
#>
#> $hini
#> [1] 0
#>
#> $maxordn
#> [1] 12
#>
#> $maxords
#> [1] 5
#>
#> $covsInterpolation
#> locf
#> 1
#>
#> $addCov
#> [1] TRUE
#>
#> $returnType
#> rxSolve
#> 0
#>
#> $sigma
#> NULL
#>
#> $sigmaDf
#> NULL
#>
#> $nCoresRV
#> [1] 1
#>
#> $sigmaIsChol
#> [1] FALSE
#>
#> $sigmaSeparation
#> [1] "auto"
#>
#> $sigmaXform
#> identity
#> 4
#>
#> $nDisplayProgress
#> [1] 10000
#>
#> $amountUnits
#> [1] NA
#>
#> $timeUnits
#> [1] "hours"
#>
#> $addDosing
#> [1] FALSE
#>
#> $stateTrim
#> [1] Inf
#>
#> $updateObject
#> [1] FALSE
#>
#> $omega
#> NULL
#>
#> $omegaDf
#> NULL
#>
#> $omegaIsChol
#> [1] FALSE
#>
#> $omegaSeparation
#> [1] "auto"
#>
#> $omegaXform
#> variance
#> 6
#>
#> $nSub
#> [1] 1
#>
#> $thetaMat
#> NULL
#>
#> $thetaDf
#> NULL
#>
#> $thetaIsChol
#> [1] FALSE
#>
#> $nStud
#> [1] 1
#>
#> $dfSub
#> [1] 0
#>
#> $dfObs
#> [1] 0
#>
#> $seed
#> NULL
#>
#> $nsim
#> NULL
#>
#> $minSS
#> [1] 10
#>
#> $maxSS
#> [1] 1000
#>
#> $strictSS
#> [1] 1
#>
#> $infSSstep
#> [1] 12
#>
#> $istateReset
#> [1] TRUE
#>
#> $subsetNonmem
#> [1] TRUE
#>
#> $hmaxSd
#> [1] 0
#>
#> $maxAtolRtolFactor
#> [1] 0.1
#>
#> $from
#> NULL
#>
#> $to
#> NULL
#>
#> $by
#> NULL
#>
#> $length.out
#> NULL
#>
#> $iCov
#> NULL
#>
#> $keep
#> NULL
#>
#> $keepF
#> character(0)
#>
#> $drop
#> NULL
#>
#> $warnDrop
#> [1] TRUE
#>
#> $omegaLower
#> [1] -Inf
#>
#> $omegaUpper
#> [1] Inf
#>
#> $sigmaLower
#> [1] -Inf
#>
#> $sigmaUpper
#> [1] Inf
#>
#> $thetaLower
#> [1] -Inf
#>
#> $thetaUpper
#> [1] Inf
#>
#> $indLinPhiM
#> [1] 0
#>
#> $indLinPhiTol
#> [1] 1e-07
#>
#> $indLinMatExpType
#> expokit
#> 2
#>
#> $indLinMatExpOrder
#> [1] 6
#>
#> $idFactor
#> [1] TRUE
#>
#> $mxhnil
#> [1] 0
#>
#> $hmxi
#> [1] 0
#>
#> $warnIdSort
#> [1] TRUE
#>
#> $ssAtol
#> [1] 1e-08
#>
#> $ssRtol
#> [1] 1e-06
#>
#> $safeZero
#> [1] 1
#>
#> $sumType
#> pairwise
#> 1
#>
#> $prodType
#> long double
#> 1
#>
#> $sensType
#> advan
#> 4
#>
#> $linDiff
#> tlag f rate dur tlag2 f2 rate2 dur2
#> 1.5e-05 1.5e-05 1.5e-05 1.5e-05 1.5e-05 1.5e-05 1.5e-05 1.5e-05
#>
#> $linDiffCentral
#> tlag f rate dur tlag2 f2 rate2 dur2
#> TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
#>
#> $resample
#> NULL
#>
#> $resampleID
#> [1] TRUE
#>
#> $maxwhile
#> [1] 100000
#>
#> $cores
#> [1] 0
#>
#> $atolSens
#> [1] 1e-08
#>
#> $rtolSens
#> [1] 1e-06
#>
#> $ssAtolSens
#> [1] 1e-08
#>
#> $ssRtolSens
#> [1] 1e-06
#>
#> $simVariability
#> [1] NA
#>
#> $nLlikAlloc
#> NULL
#>
#> $useStdPow
#> [1] 0
#>
#> $naTimeHandle
#> ignore
#> 1
#>
#> $addlKeepsCov
#> [1] FALSE
#>
#> $addlDropSs
#> [1] TRUE
#>
#> $ssAtDoseTime
#> [1] TRUE
#>
#> $ss2cancelAllPending
#> [1] FALSE
#>
#> $naInterpolation
#> locf
#> 1
#>
#> $keepInterpolation
#> locf
#> 1
#>
#> $.zeros
#> NULL
#>
#> attr(,"class")
#> [1] "rxControl"
#>
#> $method
#> [1] "ML"
#>
#> $verbose
#> [1] TRUE
#>
#> $returnNlme
#> [1] FALSE
#>
#> $addProp
#> [1] "combined2"
#>
#> $calcTables
#> [1] TRUE
#>
#> $compress
#> [1] TRUE
#>
#> $random
#> NULL
#>
#> $fixed
#> NULL
#>
#> $weights
#> NULL
#>
#> $ci
#> [1] 0.95
#>
#> $sigdig
#> [1] 4
#>
#> $sigdigTable
#> [1] 4
#>
#> $muRefCovAlg
#> [1] TRUE
#>
#> $genRxControl
#> [1] TRUE
#>
#> attr(,"class")
#> [1] "nlmeControl"
nlmixr2NlmeControl()
#> $maxIter
#> [1] 100
#>
#> $pnlsMaxIter
#> [1] 100
#>
#> $msMaxIter
#> [1] 100
#>
#> $minScale
#> [1] 0.001
#>
#> $tolerance
#> [1] 1e-05
#>
#> $niterEM
#> [1] 25
#>
#> $pnlsTol
#> [1] 0.001
#>
#> $msTol
#> [1] 1e-06
#>
#> $returnObject
#> [1] FALSE
#>
#> $msVerbose
#> [1] FALSE
#>
#> $msWarnNoConv
#> [1] TRUE
#>
#> $gradHess
#> [1] TRUE
#>
#> $apVar
#> [1] TRUE
#>
#> $.relStep
#> [1] 6.055454e-06
#>
#> $minAbsParApVar
#> [1] 0.05
#>
#> $opt
#> [1] "nlminb"
#>
#> $natural
#> [1] TRUE
#>
#> $sigma
#> [1] 0
#>
#> $optExpression
#> [1] TRUE
#>
#> $literalFix
#> [1] TRUE
#>
#> $sumProd
#> [1] FALSE
#>
#> $rxControl
#> $scale
#> NULL
#>
#> $method
#> liblsoda
#> 2
#>
#> $atol
#> [1] 1e-04
#>
#> $rtol
#> [1] 1e-04
#>
#> $maxsteps
#> [1] 70000
#>
#> $hmin
#> [1] 0
#>
#> $hmax
#> [1] NA
#>
#> $hini
#> [1] 0
#>
#> $maxordn
#> [1] 12
#>
#> $maxords
#> [1] 5
#>
#> $covsInterpolation
#> locf
#> 1
#>
#> $addCov
#> [1] TRUE
#>
#> $returnType
#> rxSolve
#> 0
#>
#> $sigma
#> NULL
#>
#> $sigmaDf
#> NULL
#>
#> $nCoresRV
#> [1] 1
#>
#> $sigmaIsChol
#> [1] FALSE
#>
#> $sigmaSeparation
#> [1] "auto"
#>
#> $sigmaXform
#> identity
#> 4
#>
#> $nDisplayProgress
#> [1] 10000
#>
#> $amountUnits
#> [1] NA
#>
#> $timeUnits
#> [1] "hours"
#>
#> $addDosing
#> [1] FALSE
#>
#> $stateTrim
#> [1] Inf
#>
#> $updateObject
#> [1] FALSE
#>
#> $omega
#> NULL
#>
#> $omegaDf
#> NULL
#>
#> $omegaIsChol
#> [1] FALSE
#>
#> $omegaSeparation
#> [1] "auto"
#>
#> $omegaXform
#> variance
#> 6
#>
#> $nSub
#> [1] 1
#>
#> $thetaMat
#> NULL
#>
#> $thetaDf
#> NULL
#>
#> $thetaIsChol
#> [1] FALSE
#>
#> $nStud
#> [1] 1
#>
#> $dfSub
#> [1] 0
#>
#> $dfObs
#> [1] 0
#>
#> $seed
#> NULL
#>
#> $nsim
#> NULL
#>
#> $minSS
#> [1] 10
#>
#> $maxSS
#> [1] 1000
#>
#> $strictSS
#> [1] 1
#>
#> $infSSstep
#> [1] 12
#>
#> $istateReset
#> [1] TRUE
#>
#> $subsetNonmem
#> [1] TRUE
#>
#> $hmaxSd
#> [1] 0
#>
#> $maxAtolRtolFactor
#> [1] 0.1
#>
#> $from
#> NULL
#>
#> $to
#> NULL
#>
#> $by
#> NULL
#>
#> $length.out
#> NULL
#>
#> $iCov
#> NULL
#>
#> $keep
#> NULL
#>
#> $keepF
#> character(0)
#>
#> $drop
#> NULL
#>
#> $warnDrop
#> [1] TRUE
#>
#> $omegaLower
#> [1] -Inf
#>
#> $omegaUpper
#> [1] Inf
#>
#> $sigmaLower
#> [1] -Inf
#>
#> $sigmaUpper
#> [1] Inf
#>
#> $thetaLower
#> [1] -Inf
#>
#> $thetaUpper
#> [1] Inf
#>
#> $indLinPhiM
#> [1] 0
#>
#> $indLinPhiTol
#> [1] 1e-07
#>
#> $indLinMatExpType
#> expokit
#> 2
#>
#> $indLinMatExpOrder
#> [1] 6
#>
#> $idFactor
#> [1] TRUE
#>
#> $mxhnil
#> [1] 0
#>
#> $hmxi
#> [1] 0
#>
#> $warnIdSort
#> [1] TRUE
#>
#> $ssAtol
#> [1] 1e-08
#>
#> $ssRtol
#> [1] 1e-06
#>
#> $safeZero
#> [1] 1
#>
#> $sumType
#> pairwise
#> 1
#>
#> $prodType
#> long double
#> 1
#>
#> $sensType
#> advan
#> 4
#>
#> $linDiff
#> tlag f rate dur tlag2 f2 rate2 dur2
#> 1.5e-05 1.5e-05 1.5e-05 1.5e-05 1.5e-05 1.5e-05 1.5e-05 1.5e-05
#>
#> $linDiffCentral
#> tlag f rate dur tlag2 f2 rate2 dur2
#> TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
#>
#> $resample
#> NULL
#>
#> $resampleID
#> [1] TRUE
#>
#> $maxwhile
#> [1] 100000
#>
#> $cores
#> [1] 0
#>
#> $atolSens
#> [1] 1e-08
#>
#> $rtolSens
#> [1] 1e-06
#>
#> $ssAtolSens
#> [1] 1e-08
#>
#> $ssRtolSens
#> [1] 1e-06
#>
#> $simVariability
#> [1] NA
#>
#> $nLlikAlloc
#> NULL
#>
#> $useStdPow
#> [1] 0
#>
#> $naTimeHandle
#> ignore
#> 1
#>
#> $addlKeepsCov
#> [1] FALSE
#>
#> $addlDropSs
#> [1] TRUE
#>
#> $ssAtDoseTime
#> [1] TRUE
#>
#> $ss2cancelAllPending
#> [1] FALSE
#>
#> $naInterpolation
#> locf
#> 1
#>
#> $keepInterpolation
#> locf
#> 1
#>
#> $.zeros
#> NULL
#>
#> attr(,"class")
#> [1] "rxControl"
#>
#> $method
#> [1] "ML"
#>
#> $verbose
#> [1] TRUE
#>
#> $returnNlme
#> [1] FALSE
#>
#> $addProp
#> [1] "combined2"
#>
#> $calcTables
#> [1] TRUE
#>
#> $compress
#> [1] TRUE
#>
#> $random
#> NULL
#>
#> $fixed
#> NULL
#>
#> $weights
#> NULL
#>
#> $ci
#> [1] 0.95
#>
#> $sigdig
#> [1] 4
#>
#> $sigdigTable
#> [1] 4
#>
#> $muRefCovAlg
#> [1] TRUE
#>
#> $genRxControl
#> [1] TRUE
#>
#> attr(,"class")
#> [1] "nlmeControl"